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t is predicted that the exponential growth of store-
and-forward (packet switching) networks such as

the Internet and/or asynchronous transfer mode (ATM) will
continue for some time, and that their traffic volume will soon
exceed that of traditional telephone networks. As soon as this
happens, even before it happens, there will be very strong
pressure for all communication services to make use of the
cheapest available communication service; in other words,
there is pressure for all services to use one integrated multi-
service network. Two significant reasons for this pressure are:
• One network is cheaper than two (or more) for the users.
• Services often need access to other services, which is

impossible if they are on a different network.
Indeed, we can see this already beginning to happen, and

the communication, computer, and entertainment industries
have been reorganizing themselves in anticipation of this
development, which is sometimes referred to as convergence.

In such a context of rapid ongoing change it may seem
impossible to make much in the way of a definite statement
about the future. However, perhaps the old saying, “Change is
the only constant,” will come to our aid. In particular, as net-
works get larger, the impact of one traffic event, or one class
of traffic, or one group of users, in the whole spectrum of fac-
tors which make up the network, will become less and less sig-
nificant, and as a consequence, the overall behavior of the
network may become somewhat more predictable.

In packet switching networks, traffic is segmented into blocks
of data. These blocks may be Internet packets or ATM cells.
For the purpose of this article the specifics of traffic segmenta-
tion are not important; we shall use the word cell to refer to the
basic unit of traffic load, and for simplicity we shall assume that
all cells are of the same size (as in ATM). Such cells are
switched between switches according to information contained
in their headers. When cells arrive at a switch, or when they
are ready to leave a switch, if an excess number of cells all
need to use the same link at the same time, cells will have to
be stored in a buffer awaiting transmission.

This causes random delays for the
cells which may degrade performance of
services based on these cells. Some ser-
vices may be badly affected if the delay
caused in this way varies excessively. If
the rate of cells heading down a certain
link remains greater than the link capac-
ity for a sufficient period of time, the
buffer will overflow and loss occurs. For
data services, such loss leads to retrans-
missions which delay messages even
more, or may even cause network con-

gestion collapse. In video services, cell loss reduces picture
quality. Virtually all aspects of performance over which we
have any control when designing and managing networks are
related to the levels of stored data in the buffers which sit
between the switches and transmission links of the network.

Store-and-forward networks can be viewed as a network of
queues, and the most fundamental component in such net-
works is the single-server queue. Accordingly, performance
analysis of a single-server queue has been a focal point of
communications research for several years. The important
questions often raised by network planners and designers are:
how much bandwidth is required to serve a bursty traffic
stream such that certain quality of service (QoS) requirements
are met? Or equivalently, what is the proper average utiliza-
tion of a given link serving a bursty traffic stream? How is this
appropriate utilization level affected when the traffic is com-
posed of many traffic streams? In other words, what is the
multiplexing gain? Is there an accurate and useful traffic
model in the form of a simple stochastic process which can be
described by a small number of parameters and, when fed into
a single server queue, gives the same queuing performance as
a real traffic stream? Such a traffic model will be very useful
in network design tools or in tools supporting real-time traffic
management. Despite very extensive research during the last
20 years [1], there is no consensus on such a model. The wish
of many practitioners for an “Erlang formula” for broadband
traffic has not yet been granted. Nevertheless, significant
progress has been made over the years in understanding the
characteristics of such traffic. We intend here to provide the
reader with insights into these characteristics, and to make a
contribution toward a consensus on certain key aspects of
broadband traffic modeling.

Although the significance of the effect of traffic correlation
on queuing performance was recognized, during the ’80s and
early ’90s, the focus of traffic modeling research was mainly
on processes exhibiting only short-range dependence (SRD).
(See [1] for a comprehensive review on traffic models.)
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A much clearer picture of the progress toward an integrated
high-speed multiservice network is now emerging. Such net-

works were anticipated over 20 years ago, at a time when packet switching was just
another way to transmit data. Now the technology is so mature that media barons are
organizing their investments in order to take advantage of the profit. Many of the techni-
cal problems are now solved, and the fundamental protocols required for these networks
are sufficiently well-defined to support a rapidly expanding industry. However, consensus
on how to talk about the statistics of the data transmitted around these networks has not
been readily forthcoming. Nevertheless, there now exists a family of models with sufficient
richness to describe real traffic fairly well, which can be parameterized conveniently, and
which degenerates to a readily analyzable Gaussian model in the situation of very large
networks. This analysis leads to important architectural conclusions which accord with
common sense, in particular the conclusion that integrated networks of the future should
be able to provide better and better service with efficiency tending toward perfect. This is
a rather happy conclusion which thoroughly confirms the current rapid drive toward an
all-encompassing integrated multiservice network. Rather than the increase in traffic and
diversity of service types leading to greater and greater complexity, it seems that the flow
of traffic in our networks may become steadily more manageable.
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The discovery of long-range dependence (LRD) in Ether-
net traffic in Bellcore [2] is considered to be one the most sig-
nificant in the area of traffic modeling. Further studies confirm
that metropolitan area network (MAN) traffic [3], wide area
network (WAN) traffic, and variable bit rate (VBR) video
traffic [1] also exhibit LRD (or self-similarity or fractal) char-
acteristics. This discovery provided insight into traffic behavior
which has brought researchers closer to achieving the goal of
obtaining useful traffic models supporting efficient network
dimensioning procedures and traffic management functions.

The rapid and ongoing aggregation of more and more traf-
fic onto the Internet, or whatever it becomes, is a factor which
cannot be ignored in traffic modeling. Fortunately, we can
apply a well and truly established mathematical theory to this
process of aggregation to discover how this growth might
affect traffic and the performance it experiences: the central
limit theorem. This theorem applies not just to the sample dis-
tribution of the amount of traffic arriving in a certain interval
of time, but actually to the entire joint distribution of traffic in
all streams arriving in a whole range of different time intervals
[4]. As a consequence, we can expect traffic to become more
and more like Gaussian processes, and we can expect net-
works to behave more closely, as time passes, to the way they
might behave if the traffic were Gaussian.

At the moment, network traffic does not appear to be all
that close to Gaussian. In many networks the degree of aggre-
gation is not sufficient to inhibit the bad behavior of one traf-
fic stream from impinging negatively on another, and the only
way to guarantee good performance (low delay) is to operate
at relatively low occupancies. However, once the degree of
aggregation is sufficient that the approximation by Gaussian
traffic is good, a rather different regime seems to emerge.
Whenever independent quantities are added, their mean
grows linearly in the number added, while their standard devi-
ation grows in proportion to the square root of the number
added; for this reason, we often see a sort of smoothing taking
place. It appears that the same should be true of network traf-
fic, but only from that point in time when a Gaussian approxi-
mation is valid.

If networks were growing slowly, considering how unpleas-
ant some network traffic is, it would be unreasonable to hold
out hope for the central limit theorem to come to our rescue
in this manner. However, traffic growth rates are very large
and not slackening off, and the central links of today’s net-
works carry traffic from millions of independent sources.

At the edge of this desert of bursty traffic which we have
been traversing, while the communication infrastructure of the
third millenium is put in place, there sits, just on the horizon,
a land of milk and honey — the realm of integrated multiser-
vice networks, in which all services receive good service,
despite the high utilization levels on all the links, and there is

no need to set up elaborate schemes to protect one service
from another. And the reason things are so good in this realm
is that the traffic there is Gaussian! However, before traffic
becomes Gaussian, a simple model like the M/Pareto, if prop-
erly used, can potentially provide accurate prediction of queu-
ing performance and dimensioning for bursty LRD traffic.

BASIC CONCEPTS
In this section we shall explain the basic concepts in the art of
traffic modeling. In particular, we consider a single-server queue
fed by a traffic stream and explain the effect of key statistical
characteristics of the traffic process on queuing performance.

QUEUING PERFORMANCE MEASURES
The most important queuing performance measures for net-
works are delay, jitter (standard error, or variance, of delay),
loss, and overflow. Since these are statistical quantities, we
need to talk about their mean and variance, or their probabili-
ty distribution. Jitter can be important, because some services
can cope perfectly well with a consistent delay, but not very
well with fluctuating delays.

Although these measures may not always represent subjective
QoS perceived by users, they are relatively simple to measure,
monitor, and accommodate, and hence they are used in prac-
tice. Delay is the time from the moment a cell arrives until its
service is complete. Loss ratio is the ratio between the total
number of cells lost and the total number of cells arriving. The
underlying assumption in the definition of loss ratio is that the
buffer is finite, and cells arriving when the buffer is full are lost.
On the other hand, to define overflow probability we usually
consider an infinite buffer queue, and define overflow probabil-
ity as the probability (or the proportion of time) that the num-
ber of cells in the buffer exceeds a certain threshold. In queuing
theory, overflow probability is closely related to the concepts of
virtual waiting time or unfinished work distribution.

Out of the four, the overflow probability is the most
amenable to mathematical analysis, and in many publications
it is used as an approximation for loss ratio. Normally, this is
not a bad approximation; however, one should keep in mind
that we can easily create a situation whereby the overflow
probability is very small (almost zero) and the loss ratio is
close to one. Consider a case where the input process is char-
acterized by a very bursty process which starts with a large
burst that arrives at once, and then for a very long time (much
longer than the time it takes to process the burst) there are
no arrivals at all; then another large burst arrives and the pro-
cess repeats itself. Clearly, most of the time there is no traffic,
and hence the overflow probability is very small. On the other
hand, in the case of finite buffer, most of the traffic is lost
because each burst is much bigger than the amount of work
that can be buffered; therefore, the loss ratio is almost one.
Of course, this example is not a typical case. In Fig. 1 we com-
pare loss ratio and overflow probability in a queue fed by an
Ethernet trace, and demonstrate that the two are closely relat-
ed in a more realistic situation. Overflow probability will be
used henceforth to characterize performance because it is
readily amenable to analysis and hence provides us with the
insight we need.

TRAFFIC CHARACTERISTICS
By a link we mean any shared transmission resource, not nec-
essarily a physical link. It can be a virtual path or a logical link
dedicated to a certain service where many connections of the
same type are multiplexed together. Link dimensioning is not
only done at the network design stage. Dimensioning of logi-
cal links and virtual paths can take place during operation

■ Figure 1. Overflow probability versus cell loss ratio.
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when bandwidth is switched between different logical links to
optimize network utilization and to guarantee QoS to users.
Such bandwidth switching can rely on real-time traffic mea-
surements and optimal use of these measurements for effi-
cient network operation. An understanding of important
traffic characteristics is essential for optimal use of traffic
measurements. We begin our discussion with the two simple
characteristics, peak and mean, and then discuss characteris-
tics related to burstiness.

Peak and Mean — The mean is simply the average number
of cells (amount of work) generated in a unit of time. The
peak represents the highest rate generated, and in the context
of ATM it is defined as the reciprocal of the minimal inter-
cell time.

Clearly, if the service rate is equal to or higher than the
peak rate, no cells will ever be buffered, and the cell loss
ratio (CLR) will be equal to zero. On the other hand, if the
service rate is lower than the mean arrival rate, the queue
will lead to unacceptable levels of delay, CLR, and overflow
probability. Setting the service rate equal to the peak is
called peak rate allocation (PRA). For typical bursty streams,
PRA is too wasteful because very rarely does the source
transmit at its peak, and normally an optimal service rate
will be somewhere between the peak and the mean. The
concept of optimal service rate, known also as effective
bandwidth, is the minimal service rate which can serve a
bursty stream such that QoS requirements are met. If the
difference between peak and mean is very large and the
traffic is very rarely at its peak, PRA may be wasteful; nev-
ertheless, PRA is an important option and should be used
for services requiring very high QoS, or for cases where the
peak cell rate (PCR) is used for long periods; a special case
of the latter is where the peak is equal to the mean. This is
the case of constant bit rate (CBR) traffic, in which case
PRA must be used.

Normally, a link will be used by many bursty sources, and
rarely, they all transmit at their peak at the same time; and
since most bursty services do not require very stringent QoS,
optimal decisions on effective bandwidth will have to be made
to operate the network economically. In many cases, the peak
is many times the mean (Fig. 2) and the range of possible
effective bandwidth levels very wide. The decision of how to
set the effective bandwidth is very much affected by the
burstiness of the traffic.

Burstiness and Correlation — It has been known for many
years that if sources are more bursty, queuing performance is
degraded, and to meet QoS we must increase the service rate.

However, what exactly the term burstiness means in
terms of measurable traffic statistics has been a criti-
cal problem. In other words, the problem of identify-
ing the critical traffic statistics that cause congestion,
and their effect on congestion, has been an open
problem for many years.

Clearly, the variance of the amount of work arriv-
ing in an interval, that of the marginal distribution, or
the short-term variance affects queuing performance.
Assuming a single-server queue (SSQ) with a fixed
service rate, which is greater than the mean arrival
rate to ensure stability, if the mean arrival rate stays
fixed and the variance increases, the frequency of
congestion will increase and with it average queue
size levels, overflow probabilities, CLR, and delay. In
fact, for every arbitrarily small mean, it is easy to
demonstrate that large variance can lead to arbitrarily
high CLR. Consider the case where a very large batch

arrives (the batch is much larger than the service rate and the
buffer size) and almost all of it is lost. Following the arrival of
the very large batch there are no arrivals for a long period of
time — long enough to keep the overall mean arrival rate
below any given level.

The mean, peak, and short-term variance are not the only
critical statistical characteristics. It has been known for many
years that the traffic autocorrelation function has significant
effect on queuing performance. It is easy to demonstrate a sit-
uation wherein a traffic stream with a given mean, peak, and
variance is fed into an SSQ with a finite buffer and no loss
occurs, but as the correlation increases (without changing the
mean, peak, and short-term variance, or even the entire
marginal distribution) loss increases significantly. A high level
of correlation means long periods of heavy traffic (typically
with the arrival rate higher than the service rate) during which
the queue builds up and significant losses occur. These long
periods of heavy traffic will typically be followed by long peri-
ods of light traffic, but the damage (the loss) is already done.
On the other hand, low correlation means that short periods
of high traffic are quickly followed by low-traffic periods, alle-
viating the danger of buffer overflow.

In Figs. 3 and 4 we demonstrate the adverse effect of cor-
relation on performance and link utilization. The LRD curve
in Fig. 3 represents the overflow probability as a function of
the buffer size of an SSQ fed by measured Ethernet traffic.
The “shuffled” curve represents the overflow probability ver-
sus buffer size for the same traffic, but in random order
(obtained by shuffling the original measured traffic, thus
retaining the marginal distribution). The SRD curve repre-
sents traffic where groups of 20 s traffic streams each are
shuffled while the traffic within each group is unshuffled. It is

■ Figure 2. Mean and peak for an Ethernet trace.
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■ Figure 3. The effect of correlation on overflow probability.
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clear that correlation has an adverse effect on performance,
even if the marginal distribution remains intact.

In Fig. 4 we demonstrate the effect of correlation on link
efficiency by determining the minimal bandwidth required
to serve a traffic stream such that the CLR will be kept
below a certain value. The results are presented for a wide
range of buffer sizes. It is clear from the figure that the
LRD traffic requires much more bandwidth than the shuf-
fled traffic.

DISCRETE TIME MODELING
In this article we motivate the use of the discrete time fractal
Gaussian model as an accurate and flexible model for aggre-
gate traffic. For the purpose of comparability we shall dis-
cretize also the M/Pareto model. We shall now provide some
basic definitions related to a generic discrete time traffic (or
queuing) model. Defining the discrete time queuing model
mathematically gives us an opportunity to mathematically
define the traffic characteristics discussed earlier. 

Consider a FIFO single server queue. Let time be divid-
ed into fixed-length sampling intervals. The model allows
arbitrary choice of interval length. Let An be a continuous
random variable representing the amount of work entering
the system during the nth sampling interval. The process
{An} is assumed to be stationary and ergodic. Let τ be a
fixed number representing the amount of work which can
be processed by the server per sampling interval .  We
assume here for simplicity that the service takes place at
the end of the interval. The mean of the amount of work
arriving in an interval n is denoted E(An). The variance of
An is denoted by σ2.

Let the sequence of continuous random variables Yn be the
net input process defined as 

Yn = An – τ,    n ≥ 0.

Let Vn be the unfinished work at the beginning of the nth
sampling interval. Using the above notation, the system unfin-
ished work process, for the case of infinite buffer, satisfies
Lindley’s recurrence equation:

Vn+1 = (Vn + Yn)+,         n ≥ 0, (1)

where V0 = 0 and where X+ = max(0, X). The choice of sam-
pling interval length should be made in a way that justifies the
other assumptions of the model. For further discussion of the
choice of sampling interval, see [5].

Let m be the mean of the net input, that is, m = E(An) – τ.
A necessary and sufficient condition for queuing stability is m
< 0. Since τ is constant, σ2 = Var(An) = Var(Yn).

We can now talk about the long-term variance, the vari-
ance of the amount of work that arrives over a long period of
time (many time intervals). In other words, we consider the
variance of the amount of work arriving in n consecutive
intervals: V(n) = Var (Σk=1

n Ak).
Of particular interest is the limit: v = limn→∞ = V(n)/n.

We call this limit the asymptotic variance rate (AVR) [3]. The
AVR is also equal to the autocovariance sum [5]. That is, v =
Σk=–∞

∞ Cov(An, An+k). 
If the AVR is finite the process is SRD; otherwise, it is

LRD. In other words, when this limit is infinite, the autoco-
variance (as well as the autocorrelation function) has a heavy
tail which characterizes LRD traffic.

We have been measuring work in continuously varying
units (real numbers) and time in discrete units (integers).
Since work arrives in cells, and time can be subdivided arbi-
trarily, a strong case can be put that we should measure work
in discrete units and time continuously.

The use of a continuous variable for work is justifiable,

however, because the quantity of data in one ATM cell is very
small and, as networks grow in all the ways previously dis-
cussed, this fundamental quantum of traffic will become less
and less significant. Use of a continuous quantity for work
also allows us to use a continuous probability distribution —
such as the Gaussian distribution — to describe it. This
becomes quite important when we consider very large aggre-
gates of traffic in which, because of the effect of the central
limit theorem, the best model is Gaussian.

The basic queuing equation which describes the buffering
in the switches of a network is Eq. 1, which presupposes the
use of discrete time. Switches do operate in this sort of fash-
ion. On the other hand, as networks get larger, the number of
basic cycles per second of a switch will be increasing steadily,
so a continuous-time version of Eq. 1 might be a better
model. A continuous time version can be written thus:

(2)

If the sampling interval used in Eq. 1 is sufficiently small
and the arriving work process, {An}n≥ 0 is positive, Eqs. 1 and
2 should be virtually equivalent. However, some continuous-
time models, in particular fractional Brownian noise, have the
property that at small timescales more and more of the arriv-
ing work appears to be negative — virtually half of all arriving
work at sufficiently small timescales. In this situation the con-
tinuous and discrete models appear to behave quite different-
ly. This particular model is quite important because it is the
simplest Gaussian model which captures the essential features
of today’s network traffic; however, the anomalous behavior at
small timescales does not correspond to the real world, so we
use discrete time models.

FRACTAL TRAFFIC
Fractal (self-similar or LRD) traffic is characterized by bursti-
ness on many timescales (hence the expression self-similarity).
This is demonstrated in Fig. 5. We can see that as we increase
the timescale the shuffled traffic is smoothed out, while the
fractal traffic retains much of its burstiness.

To explain the traffic parameters related to fractal (LRD)
traffic, we shall reuse notation defined above for the discrete
time models. Suppose V(n) = C1 x nβ . If β = 1, we have a
linear relationship between V(n) and n, so v is finite, and the
process is SRD. If 1 < β < 2, V(n)/n approaches infinity as n
grows, and the process is LRD. Stationarity of the sequence
ensures that β ≤ 2, and the only case where β = 2 is where
successive traffic values are identical.

Since logV(n) = C2 +β x log n, β is the slope on a log-log
graph of V(n) versus n. This slope is related to the Hurst
parameter, H = β/2. (The name of Hurst derives from work on
water flow in which long-range dependence of time series was
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■ Figure 4. The effect of correlation on utilization.
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first identified). The higher the value of H (or β), the higher
the level of autocorrelation, and consequently the worse the
queuing performance.

THE M/PARETO MODEL
Fractal traffic is characterized by significant long bursts [1].
Such bursts are caused by downloading large files, or long
periods of high levels of VBR video activities, intensive bursts
of database activity, and so on. It is therefore appealing to
model fractal traffic by a model involving such long bursts.
The M/Pareto model was used in [6] and is basically a Poisson
process with rate λ of Pareto-distributed overlapping bursts.
For more details of the statistics of this model, see [7] and the
references cited therein.

Each burst, from the time of its arrival, will continue for a
random period. During that random period, the cell arrival
process during a burst is constant. Let r be its rate. The period
that represents the length of the burst has a Pareto distribu-
tion. The probability that a Pareto-distributed random vari-
able X exceeds threshold x is

1< γ <2, δ > 0. The mean of X is δ/(γ – 1) and its variance is

infinite. Thus, the mean number of cells within one burst is
rδ/(γ – 1). The mean amount of work arriving within an inter-
val of length t in the M/Pareto traffic model is λtrδ/(γ – 1).

By [7], the variance of the work arriving in an interval of
length t for this M/Pareto model is

in which H = (3 – γ)/2. For large t, the dominant term here is 

Since the growth of this function is proportional to t2H, this
model is described as asymptotically self-similar with Hurst
parameter H = (3 – γ)/2.

GAUSSIAN MODELS
Due to the central limit theorem, the Gaussian model accu-
rately represents aggregation of many traffic streams. This has
been proved in [4] and is illustrated by simulation later in this
article. Fractional Brownian noise traces used in the simula-
tions described in this article were generated by the technique
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■ Figure 5. Self-similarity.
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described in [8].

THE DISCRETE GAUSSIAN MODEL
Consider a FIFO single server queue, let time be divided into
fixed-length sampling intervals, and consider all the defini-
tions and notation of the discrete time queuing model
described earlier. We now suppose that the arrival process,
namely the {An} process, is not only stationary and ergodic,
but also Gaussian. We allow for any autocorrelation function
for the arrival process; that is, we allow the AVR (namely v)
to be finite (the SRD case) or infinite (the LRD case). We
shall now present performance results for the overflow proba-
bilities for these two cases. Notice that for the SRD case the
tail of the overflow probability function is negative exponen-
tial, while this is not true for the LRD case.

The Short-Range Dependent Case — For the SRD case,
the tail of the overflow probability (or the unfinished work
distribution) is exponential. By [5], it can be approximated by

P{V∞ > t} ≈ ~ces*t, t > 0, (3)

where 

and

(4)

The function ψ(m, σ) represents the mean of the random
variable X+, where X is a normally distributed random vari-
able with mean –m and standard deviation σ. The result
obtained for the rate of the tail s* is exact, while that obtained
for weight of the tail is an approximation.

Because the service rate τ is fixed and independent of the
traffic, the critical three traffic parameters are E(An), σ2, and
v. These three parameters are additive in the sense that the
parameters for traffic formed by aggregating two streams can
be obtained by adding the parameters of those streams.

The Long-Range Dependent Case — As mentioned above,
in many applications traffic is LRD, and in this case the
results from the previous subsection do not apply. Under the
LRD case v is not finite, and the unfinished work distribution
does not have a dominant exponential tail. Fortunately, as
shown in [3] (although a blunder introduced an incorrect fac-
tor in that article), we can apply the SRD results to the LRD
case and obtain the following approximation for the overflow
probability:

(5)

in which

Equation 5 has recently been validated by simulation
experiments [9] and was shown to be quite accurate as long as
the Hurst parameter takes on values larger than 0.5, which is
usually the case. Figure 6, from [9], illustrates the accuracy of
Eq. 5.

FRACTIONAL BROWNIAN NOISE VS. DISCRETE TIME MODELS
Interest in Gaussian models for communication networks has
been growing steadily over the last few years, and an increas-
ing collection of results have accumulated, particularly for

continuous time models. The continuous time framework is
more attractive because it avoids the need to select a some-
what arbitrary sampling interval. The primary candidate for a
Gaussian continuous time model is fractional Brownian noise
(FBN), which may be thought of as the first derivative of frac-
tional Brownian motion (FBM). An FBM process {Zt} is
characterized by the property

Var(Zt) = σ2t2H,

in which H is the Hurst parameter, and σ2 is the variance of
the amount of traffic arriving in a unit time.

Recently, rather precise results have become available for this
model [10, 11]. Somewhat surprisingly, these present quite a dif-
ferent picture from that implied by Eq. 5. One of the very
clear implications of Eq. 5 is that at low traffic levels, the prob-
ability that there will be any queuing at all in switch buffers
will be insignificant, whereas the continuous time model seems
to imply that the probability that there will be some traffic
queued will be not substantially different from 1 [10].

This contrast forces us to rethink the apparent similarity
between the discrete time and continuous time models. In the
discrete time model, within a sampling interval no queuing
takes place. Instead, all the work arriving during a sampling
interval is simply added together (positive and negative work,
if you will, according to the somewhat nonphysical framework
of Gaussian models) and processed at the end of the sampling
interval. For this reason, it is important that the sampling
interval chosen in a discrete time Gaussian model not be too
long. On the other hand, if the chosen sampling interval is too
short, the frequency of intervals during which “negative work’’
arrives becomes quite high, which results in the model becom-
ing less realistic. In effect, the sampling interval is another
parameter of the model, which must be chosen appropriately.

TRAFFIC AGGREGATION

CONVERGENCE TO GAUSSIAN
The central limit theorem applies to traffic processes, and as a
consequence, as more traffic is aggregated together, by the
sharing of a link by more and more traffic streams, traffic
becomes more Gaussian, or, more formally, weakly converges
to a Gaussian process [4]. This relies on the assumption that
the traffic arriving in a given time interval has finite variance,
a fact which seems to be confirmed by measurements. More-
over, this is the right type of convergence to apply to network
traffic; it is appropriate to say that if sufficient traffic is aggre-
gated, a Gaussian model behaves much the same as the aggre-
gated traffic [4].

Thus, at some stage in the future, as more and more
sources contribute their load to our shared public networks,
Gaussian models should become a good approximation to
their traffic. Please note that the central limit theorem does
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■ Figure 6. Comparison of analytical and simulation results for
overflow probability in a Gaussian fractal queue.
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not show that traffic will tend, in the limit, to a continuous
time Gaussian model, such as FBN. The behavior of such
models at very small timescales (events very close together) is
not necessarily similar to the behavior of real systems —
unless we make further assumptions.

Figure 7 shows a particular case where the traffic processes
being aggregated together are all M/Pareto. Under these cir-
cumstances, the aggregate traffic is also M/Pareto (because
the M/Pareto model is closed under superposition) as long as
all the bursts are identically (Pareto) distributed. Observe that
as the level of aggregation increases, the performance curves
move closer to the curve for the Gaussian case, confirming
the results of [4].

MULTIPLEXING GAIN
Theoretical and practical studies assuming a variety of models,
including the Gaussian traffic model, have often come to the
conclusion that the additional margin of transmission capacity
required by a traffic stream to be carried with adequate perfor-
mance is not lessened (when measured as a percentage of total
carried traffic) by the aggregation of several traffic streams
together. This conclusion follows, for example, if we use a
strategy for guaranteeing adequate performance based on the
constraining the performance parameter s*, as in Eq. 3.

However, the parameter s* is not the whole story, and Eq.
3 is only an approximation. Here is an alternative analysis of
multiplexing gain which comes to a very different conclusion.

Let us now assume that performance is, at least for suffi-
ciently large networks, determined solely by first and second
order (mean, variance and autocovariance) characteristics of
the carried traffic. Whether the traffic is short or long range
dependent has no impact on the argument of this subsection.

With a suitable choice of server speed (i.e., we upgrade our
transmission link appropriately), a system handling k times as
much traffic (assuming aggregation of independent sources of
traffic) is similar to the original system in the sense that the

buffer contents distribution can be obtained by rescaling the
original curve.

Let {Xn}n∈ Z denote the original traffic, with mean µ. Sup-
pose the original service rate is τ, so the net mean is m = µ –
τ and suppose Var(Σj=1

n Xj) = V(n); that is, the variance-time
curve is arbitrary.

Now consider traffic {Yn
(k)} which is obtained by aggregating

together k independent traffic streams statistically identical to
{Xn}; and for this traffic let us use a faster service time, τk = kµ
– √

–
km. That is, the performance margin of this model, the extra

capacity of the server above the rate at which traffic arrives, is
√
–
k|m| (i.e., √

–
k times the original performance margin).

The variance-time function for {Yn
(k)} is kV(n). Now let us

rescale the aggregate model by measuring work in units √
–
k

times as large as the original units. The variance-time curve of
{Yn

(k)} in these units is therefore V(n), exactly the same as the
original traffic, and the mean net input into this system, in the
chosen units, is

also the same as the original. This shows that when expressed
in units x √

–
k, the stationary queuing distribution of the system

is the same as the original system.
In order to achieve a stationary distribution which is stable

in units proportional to √
–
k, which actually implies less and less

buffering when measured in the time it takes to transmit the
work in the buffer, it is adequate that the margin above kE(X)
increase at the somewhat slower rate of √

–
k.

As a proportion of the total system capacity, the perfor-
mance margin steadily reduces. This is a concrete representa-
tion of the multiplexing gain which can be expected as networks
become larger and traffic is aggregated. This is illustrated in
Fig. 8. This formula for multiplexing gain will not apply until a
Gaussian approximation is valid.

M/PARETO MODELING OF A
NON-GAUSSIAN TRAFFIC STREAM

The problem of how to accurately characterize real traffic has
been considered unsolvable for many years. Given the insight
of the previous section, the answer to fractal traffic modeling
may be quite simple. There were many failed attempts to fit
the mean, variance, and Hurst parameter of the real traffic to
that of a model like Gaussian fractal or M/Pareto [6], and to
match the queuing curve (overflow probability versus thresh-
old). Observing Fig. 7, where we can see a family of different
queuing curves, all with the same three  key parameters — m,
variance, and Hurst parameter — we might speculate that the
missing link was the level of multiplexing, the λ of the M/Pare-
to model. In Fig. 9, we demonstrate that we can fit the
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■ Figure 7. Traffic aggregation toward a Gaussian process.
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M/Pareto to an Ethernet trace in which insufficient multiplex-
ing exists for the trace to be Gaussian.

In Fig. 9, the curve designated M/Pareto 1 represents an
arbitrary fit of the three parameters: m, variance and Hurst
parameter of the real traffic to an M/Pareto model. The curve
designated M/Pareto 2 represents, in addition to the three
parameters, a careful choice of λ and r.

CONCLUSIONS
In this article we attempt to look some distance into the
future, using the best information we have about traffic in net-
works together with a full recognition of the rapid, and
inevitable, growth of integrated multiservice networking. Fully
accounting for this growth leads us to consider how to study
the statistics of aggregation and, somewhat surprisingly, one
of the oldest and most basic facts of statistics can be pressed
into service very effectively — the central limit theorem
applies to traffic in networks and leads us to conclude that as
networks get larger, and carry traffic from more independent
sources, inevitably this traffic will become closer to Gaussian,
not just superficially but in the wholehearted sense that the
performance experienced by such aggregated traffic will be
similar to that of Gaussian traffic. This has been proved else-
where, and is illustrated above.

We say that Gaussian traffic has the very attractive proper-
ty that as a link grows, the performance margin required to
provide good service only expands in proportion to the square
root of the expanding traffic. This is a simple way to quantify
multiplexing gain. This attractive feature of traffic will only
show itself when aggregation levels are adequate.

The M/Pareto model has been used in this article for traf-
fic which is not sufficiently aggregated for the Gaussian model
to apply. A step has been made toward showing that real traf-
fic can be modeled as M/Pareto. The M/Pareto model has the
attractive feature of having sufficient parameters to replace
the basic parameters of the Gaussian model, and to have one
parameter still to spare, which can be used to allow for the
level of aggregation.
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